TMPRSS2/ERG Promotes Epithelial to Mesenchymal Transition through the ZEB1/ZEB2 Axis in a Prostate Cancer Model
نویسندگان
چکیده
Prostate cancer is the most common non-dermatologic malignancy in men in the Western world. Recently, a frequent chromosomal aberration fusing androgen regulated TMPRSS2 promoter and the ERG gene (TMPRSS2/ERG) was discovered in prostate cancer. Several studies demonstrated cooperation between TMPRSS2/ERG and other defective pathways in cancer progression. However, the unveiling of more specific pathways in which TMPRSS2/ERG takes part, requires further investigation. Using immortalized prostate epithelial cells we were able to show that TMPRSS2/ERG over-expressing cells undergo an Epithelial to Mesenchymal Transition (EMT), manifested by acquisition of mesenchymal morphology and markers as well as migration and invasion capabilities. These findings were corroborated in vivo, where the control cells gave rise to discrete nodules while the TMPRSS2/ERG-expressing cells formed malignant tumors, which expressed EMT markers. To further investigate the general transcription scheme induced by TMPRSS2/ERG, cells were subjected to a microarray analysis that revealed a distinct EMT expression program, including up-regulation of the EMT facilitators, ZEB1 and ZEB2, and down-regulation of the epithelial marker CDH1(E-Cadherin). A chromatin immunoprecipitation assay revealed direct binding of TMPRSS2/ERG to the promoter of ZEB1 but not ZEB2. However, TMPRSS2/ERG was able to bind the promoters of the ZEB2 modulators, IL1R2 and SPINT1. This set of experiments further illuminates the mechanism by which the TMPRSS2/ERG fusion affects prostate cancer progression and might assist in targeting TMPRSS2/ERG and its downstream targets in future drug design efforts.
منابع مشابه
TMPRSS2-ERG Gene Fusions induce prostate tumorigenesis through modulating microRNA miR-200c
Chromosomal translocations that juxtapose the androgen-sensitive TMPRSS2 gene promoter to the oncogenic ETS-family transcription factor ERG result in excessive ERG overexpression in approximately 50% of prostate cancer (PCa) patients. Although numerous studies have investigated ERG-downstream genes, such studies have not attempted to examine miRNAs, which however are emerging to be important re...
متن کاملThe role of epithelial–mesenchymal transition drivers ZEB1 and ZEB2 in mediating docetaxel‐resistant prostate cancer
Docetaxel is the main treatment for advanced castration-resistant prostate cancer; however, resistance eventually occurs. The development of intratumoral drug-resistant subpopulations possessing a cancer stem cell (CSC) morphology is an emerging mechanism of docetaxel resistance, a process driven by epithelial-mesenchymal transition (EMT). This study characterised EMT in docetaxel-resistant sub...
متن کاملMYC associated zinc finger protein promotes the invasion and metastasis of hepatocellular carcinoma by inducing epithelial mesenchymal transition
MYC associated zinc finger protein (MAZ) plays a key role in regulation of gene expression and tumor development. Studies have shown that deregulated expression of MAZ is closely related to the progression of tumors such as glioblastoma, breast cancer, prostate cancer and liposarcoma. However, the role of MAZ in hepatocellular carcinoma (HCC) has not been fully elucidated. Here, we found that e...
متن کاملAnalysis of epithelial mesenchymal transition markers in breast cancer cells in response to stromal cell-derived factor 1
Introduction: Metastasis is the main cause of cancer death; however, the underlying mechanisms of metastasis are largely unknown. The chemokine of stromal cell-derived factor 1 (SDF1) and the process of epithelial mesenchymal transition (EMT), both have been declared as important factors to promote cancer metastasis; however, Conspicuously, the relation between them has not been recognized well...
متن کاملTumor and Stem Cell Biology ERG Is a Critical Regulator of Wnt/LEF1 Signaling in Prostate Cancer
Chromosomal translocations juxtaposing the androgen-responsive TMPRSS2 promoter with the ETSfamily transcription factor ERG result in aberrant ERG upregulation in approximately 50% of prostate cancers. Studies to date have shown important roles of ERG in inducing oncogenic properties of prostate cancer. Its molecular mechanisms of action, however, are yet to be fully understood. Here, we report...
متن کامل